Ursodeoxycholic acid and F(6)-D(3) inhibit aberrant crypt proliferation in the rat azoxymethane model of colon cancer: roles of cyclin D1 and E-cadherin.
نویسندگان
چکیده
We have previously demonstrated that ursodeoxycholic acid(UDCA) and a fluorinated analogue of vitamin D(3), F(6)-D(3),inhibited colonic carcinogenesis in the azoxymethane (AOM) model. Generalized colonic mucosal hyperproliferation and aberrant crypt foci (ACF) are intermediate biomarkers of colon cancer. Using these biomarkers, in this study we examined the anticarcinogenic mechanisms of these chemopreventive agents. Rats were maintained on AIN-76A chow or supplemented with 0.4% UDCA or F(6)-D(3) (2.5 nmol/kg chow) and treated weekly with AOM 20 mg i.p./kg wt or saline x 2 weeks. F(6)-D(3) was continued for an additional 2 weeks and UDCA for the duration of the study. At 40 weeks, animals received bromodeoxyuridine (BrdUrd) i.p. 2 h before sacrifice. A portion of each tumor was fixed in formalin and the remainder flash frozen. Colons were divided longitudinally and half-fixed in formalin and half in ethanol. The size and location of methylene blue-stained ACF were recorded. Cell proliferation (BrdUrd labeling) and apoptosis (terminal deoxynucleotidyl transferase-mediated nick end labeling assay) were measured in colonic crypts and tumors. Protein expression levels of several regulators of cell proliferation were analyzed by immunostaining and Western blotting. Colonic crypt cyclin D1 and E-cadherin mRNA levels were measured by real-time PCR. In saline injected controls, neither UDCA nor F(6)-D(3) alone had any effect on cytokinetic parameters or on the expression of mitogenic regulators. AOM significantly increased the proliferation (percentage of BrdUrd-positive cells) of both ACF (23.1 +/- 1.7%) and non-ACF crypts (17.6 +/- 1.6%), compared with normal colonic crypts (4.5 +/- 0.8%; P < 0.05). This hyperproliferation was accompanied by a 5-fold increase in cyclin D1 and >50% decrease in E-cadherin protein (P < 0.05) in ACF, both of which are predicted to be growth-enhancing alterations. UDCA and F(6)-D(3) significantly (P < 0.05) inhibited AOM-induced crypt cell hyperproliferation, ACF development, and tumor burden. These chemopreventive agents also significantly blocked AOM-induced alterations in cyclin D1 and E-cadherin protein in ACF and tumors. In ACF, changes in mRNA levels of cyclin D1, but not E-cadherin, paralleled alterations in protein expression. Cyclooxygenase-2 and inducible nitric oxide synthase were increased in AOM tumors but not in ACF, and these changes were blocked by UDCA and F(6)-D(3). UDCA and F(6)-D(3) significantly inhibited ACF development and hyperproliferation, in part, by preventing carcinogen-induced alterations in cyclin D1 and E-cadherin. In established tumors, UDCA and F(6)-D(3) also limited inductions of cyclooxygenase-2 and inducible nitric oxide synthase, which together with their effects on cyclin D1 and E-cadherin, contribute to their chemopreventive actions.
منابع مشابه
Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling.
Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1-beta-catenin-mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-...
متن کاملEpidermal growth factor receptor controls flat dysplastic aberrant crypt foci development and colon cancer progression in the rat azoxymethane model.
PURPOSE Colonic carcinogenesis deranges growth-regulating epidermal growth factor receptors (EGFR). We previously showed that EGFR signals were up-regulated in human aberrant crypt foci (ACF), putative colon cancer precursors. The azoxymethane model of colon cancer recapitulates many aspects of human colonic tumors. Recent studies indicate that flat dysplastic ACF with increased beta-catenin ar...
متن کاملGreen tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats.
Green tea and its constituents have shown cancer-preventive activities in many animal models. In order to prepare for a human trial on the inhibition of colon carcinogenesis, we conducted a study with green tea polyphenols as the preventive agent in an azoxymethane (AOM)-induced rat colon cancer model using aberrant crypt foci (ACF) as an end point. F344 rats were given two weekly injections of...
متن کاملChemopreventive Effects of an HDAC2-Selective Inhibitor on Rat Colon Carcinogenesis and APC Mouse Intestinal Tumorigenesis
Epigenetic modulators, particularly histone deacetylases (HDACs), are valid targets for cancer prevention and therapy. Recent studies report that HDAC2 overexpression is associated with colon tumor progression and is a potential target for colon cancer prevention. This study tested chemopreventive and dose-response effects of Ohio State University HDAC42 (OSU-HDAC42), a selective HDAC2 inhibito...
متن کاملUrsodeoxycholic acid inhibits the initiation and postinitiation phases of azoxymethane-induced colonic tumor development.
Colonic tumorigenesis involves the processes of initiation and promotion/progression from normal epithelial cells to tumors. Studies in both humans and experimental models of colon cancer indicate that secondary bile acids promote tumor development. In contrast, we have demonstrated previously that another bile acid, ursodeoxycholic acid (UDCA), inhibits the development of azoxymethane (AOM)-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 11 12 شماره
صفحات -
تاریخ انتشار 2002